?

Log in

No account? Create an account

Previous Entry | Next Entry





Наследственность — воспроизведение у потомства признаков предков — представляет собой одно из наиболее удивительных и существенных свойств всех живых организмов — от вирусов и бактерий до высших растений, животных и человека. Наука о наследственности генетика (от греч. генезис — рождение, происхождение) показала, что наследственность обусловлена передачей потомкам генетической информации о всех свойствах данного организма. Одним из замечательных свойств наследственности является ее консервативность, т. е. сохранение, наследственных особенностей на протяжении многих поколений. Так, сходство предков и их потомков может сохраняться миллионы лет.

   Другим замечательным свойством наследственности является ее изменчивость. Одних лишь животных, населяющих Землю, насчитывается свыше трех миллионов видов. Если учесть многочисленные разновидности, а также породы домашних животных, сорта культурных растений и существующую индивидуальную изменчивость, станет понятен грандиозный объем этого явления. Изменчивость может затрагивать разные части тела, различные органы и даже клетки. Изменчивость можно проследить на многочисленных примерах.
   Так, в пределах одного вида Нomo Sapiens каждый индивидуум (не принимая во внимание расовые, национальные или социальные особенности) является генетически индивидуальным и отличается от других индивидуумов морфологически и физиологически, например чувствительностью к влияниям агента внешней среды (иммунологические свойства), большей или меньшей восприимчивостью к инфекционным или неинфекционным заболеваниям. Эти отличия распространяются и на психологию личности, на наличие той или иной степени одаренности.

Предметом генетики — относительно молодой биологической дисциплины — является изучение наследственности и ее изменчивости. Важнейшим понятием современной генетики является ген, основная единица наследственности. Гены, материально воплощенные в веществе наследственности — дезоксирибонуклеиновой кислоте (ДНК), определяют все наследственные особенности состава, строения и свойств данной особи, проявляющиеся у нее в процессе индивидуального развития (онтогенеза).


За пределами ДНК

   Долгое время ДНК считалась единственным носителем наследственной информации. Но сегодня биологи уверены, что существует другой, более лабильный информационный уровень, связанный с хромосомами. На смену генетике приходит эпигенетика. Геном, хранилище генетической информации, предопределяет рост и развитие организма и вовсе не является мертвым текстом, передаваемым от поколения к поколению. Скорее он напоминает невероятно сложный биохимический механизм, действующий в трехмерном пространстве и состоящий из нескольких взаимосвязанных частей. Белок-кодирующие гены - всего одна из них и часто наименьшая. У человека на долю таких генов приходится менее 2% суммарной ДНК, но именно они в течение 50 лет считались носителями всех наследственных признаков. Это представление легло в основу центральной догмы молекулярной биологии. Отсюда и представление о геноме как о неизменном чертеже, по которому строится организм...

Правильное питание: спросите у ДНК?

   По результатам новейших исследований, наши гены не статичны. Геном человека — открытая система, чутко реагирующая на особенности рациона, образа жизни, а также на внешние факторы, например на состояние окружающей среды.

   В тот момент, когда вы читаете этот доклад, каждый из 20 000 ваших генов, упакованный где-то в одной из 46 хромосом любой соматической клетки вашего организма пребывает в совершенно разных состояниях, в зависимости от того, как вы читаете этот доклад. Пьете ли чай, кофе либо гранатовый сок, сидя дома или в офисе, или мчитесь в вагоне переполненного метро, пытаясь изо всех сил удержать равновесие и читать одновременно, напрягая почти все ваши 656 мышц. И уж точно ваш генетический статус стал сейчас совершенно иным по сравнению с тем, что был, скажем, сегодня ночью, когда вы спали, вчера — когда провели полдня за рулем автомобиля, или три дня назад, после веселых выходных, не говоря уже о том, что произошло месяц, год, пять лет назад. Perpetuum mobile — все меняется и пребывает в вечном движении! Как ни странно это звучит, но наши гены тоже постоянно меняются. Нет, не сама информация, кодирующая белки, записанная в виде нуклеотидной последовательности ДНК, а состояние генов — они то активируются, то ингибируются, причем до полного выключения. Экспрессия одних из них в клетке может усиливаться плавно, скачкообразно или по какой-то иной сложной схеме, других в тот же момент — сходить на нет или держаться на определенном базальном уровне. И все это может происходить в пределах мгновений, или от нескольких минут до часов, иногда дней. Каждый наш ген имеет свой, только ему присущий status quo, который зависит от тысячи разных факторов, как внутренних, так и внешних. И нужно совсем немного, чтобы изменить его, часто так незначительно мало, что поражаешься, насколько гены чувствительны к нашим действиям, к тому, что мы ели или пили, каким воздухом дышали, как спали, отдыхали или насколько активно провели день, даже к тому, о чем думали и мечтали, над чем умственно трудились или что эмоционально переживали. Все влияет в той или иной степени, рано или поздно, прямо или опосредованно. Ген больше не рассматривается как закрытый «черный ящик» — это довольно открытая система, тонко чувствующая нас самих и окружающую среду. Конечно, каждая клетка как маленькая фабрика производит свой, только ей присущий набор белков и протеинов; нейрон нельзя заставить вдруг экспрессировать пищеварительные ферменты поджелудочной железы, хотя все эти гены у него есть, только они заблокированы, так же как клетки поджелудочной нельзя заставить синтезировать белки миелиновой оболочки аксонов или специфические синаптические макромолекулы нейронов. Все предопределено в процессе эмбрионального развития. Но управлять сложным оркестром из нескольких тысяч синтезируемых белков, которые каждая клетка экспрессирует ежеминутно, может невидимый дирижер — мы с вами, наш образ жизни плюс факторы окружающей среды.

   Ученые уже давно подметили, что однояйцевые близнецы, рожденные с абсолютно одинаковым набором генов, отличаются друг от друга по многим параметрам, например предрасположенности к болезням, особенно таким как шизофрения, депрессия или биполярное аффективное расстройство, часто имеют разные характеры и привычки, даже антропоморфические показатели тела могут быть различными. И чем старше близнецы, чем больше расходятся условия и образ их жизни, тем ярче становится выражена эта неодинаковость. Получается, что окружающая среда, личный опыт, поведение, привычки, питание и т.д. во многом определяют нас самих, нашу глобальную молекулярно-генетическую картину организма — какие гены экспрессируются, где и как, а какие гены «спят». Так, например, если один из близнецов заболел раком, то шансы другого заболеть составляют всего 20%, что показывает, насколько минимально влияние генов per se, и высоко — среды, индивидуального опыта. Или другой пример: из эпидемиологических исследований последних 50 лет известно, что частота возникновения злокачественной опухоли легких, прямой кишки, простаты и груди гораздо выше в западных странах, чем в восточных; и наоборот, рак мозга, шеи и матки обычен в Индии, а рак желудка — в Японии. Причем миграция людей полностью меняет эту картину: мигранты начинают болеть болезнями страны, куда они приехали. Опять-таки налицо мощный фактор среды. Сегодня специалисты считают, что влияние генов, которые мы наследуем, на развитие хронических болезней составляет всего 15%, остальные 85% — «заслуга» нашего образа жизни. В англоязычной научной литературе недавно даже появился такой термин, как lifestyle diseases — болезни образа жизни, к которым сейчас относят диабет, ожирение, многие сердечно-сосудистые заболевания, астму, атеросклероз, инсульты, гипертонию, расстройства гормональной, пищеварительной и иммунной систем, болезнь Альцгеймера, депрессии и фобии, даже рак.

   Сегодня ученые выделяют шесть главных факторов, непосредственно влияющих на картину экспрессии наших генов: еда, режим питания, физическая активность, уровень стресса, вредные привычки, окружающая среда (экология). Все эти факторы, помимо собственно генетики, отвечают за то, насколько мы здоровы. Как вода точит камень, так эти факторы постепенно, день за днем, «шлифуют», трансформируют наш генетический статус, что идет либо на пользу нашему организму, либо ему во вред.


Правильная пища для генов

   Пожалуй, я не ошибусь, назвав еду самым коротким путем к нашим генам. Это действительно так. Наш мозг в мгновение ока начинает продуцировать множество медиаторов, гипоталамус — гормонов, а пищеварительная система — сотню-другую пептидаз, амилаз, липаз и т.д. не только во время собственно трапезы, а задолго до нее, когда мы в мыслях предвкушаем ее вид, запах и вкус.

   Если посмотреть на весь спектр продуктов, которые человек употребляет сегодня в пищу, то можно с полной уверенностью сказать, что каждый из них обладает той или иной генрегулирующей активностью. Просто во многих случаях такую активность очень сложно выявить: она либо «маскируется» другими процессами, либо требует от ученых слишком сложных экспериментальных схем, чтобы ее как-то выявить. В данный момент в университетских лабораториях интенсивно разрабатывается примерно сотня пищевых продуктов, которые имеют наиболее сильно выраженные «генные» свойства — ученые пытаются разобраться, какие из ингредиентов продуктов умеют наилучшим образом «общаться» с нашими генами, чтобы на их основе создать новые лекарства или пищевые добавки. Вот лишь некоторые из них (активные ингредиенты указаны в скобках): виноград, красное вино (резвератрол), кориандр (линалол, монотерпены), соя (генистеин), базилик (урзоловая кислота), чернослив (олеаноловая, урзоловая кислоты, тритерпеноиды), олеандр (олеандрин), красный перец чили (капсаицин), цитрусовые (кверцетин), имбирь (гингерол), томаты (ликопен), морковь (бета-каротины), алоэ (эмодин), цветная капуста (сульфорафан), прополис (фенетиловый эфир кофеиновой кислоты, ФЭКК), артишок (силимарин).


Что нужно генам?

   Доказано, что регулярная физическая активность, в особенности профессиональный спорт, кардинально меняют не только мышечную массу, но и все другие системы организма человека, напрямую или опосредованно связанные с физической нагрузкой, — костную, сердечно-сосудистую, даже пищеварительную, — известно довольно давно. А вот то, как это происходит на уровне генома, как глобально влияет на другие системы организма, включая мозг, иммунную и репродуктивную системы, на состояния острой и хронической болезни, стресса и т.д.

   Так, по данным эпидемиологических скрининг-исследований, гиподинамия, которой сегодня страдает каждый второй офисный работник, увеличивает множество рисков, связанных со здоровьем: болезни коронарной артерии на 45%, гипертензии — на 30%, рака толстого кишечника — на 41%, рака груди — на 31%, диабета II типа — на 50%, остеопороза — на 59%, способствует накоплению холестерола, ожирению, депрессии и повышенной смертности. Что же происходит с современными «обломовыми в галстуках»? Из-за недостатка активности человек теряет массу тканей, нарушается нормальное функционирование клеток. Во время продолжительной гиподинамии у человека происходит масса адаптаций: на 25% уменьшаются ударный объем сердца и потребление кислорода, кости теряют в массе в 10 раз быстрее, чем обычно, скелетные мышцы становятся слабее, уменьшается концентрация митохондрий, чувствительность к инсулину падает в течение трех дней сидения на диване. Даже появилась теория о «генах каменного века», которая объясняет, почему наш организм начинает страдать от гиподинамии. Якобы на заре человеческой эволюции, в каменном веке, наши предки в течение двух с половиной миллионов лет выживали за счет постоянной физической активности, постоянного движения, поиска новой пищи, охоты, кочевания и т.д. За это время в нашем организме благодаря отбору появилась огромная когорта генов, которые «привыкли» к такому постоянному стимулу, и без нее начинают терять активность, ритм, нормальную экспрессию не только собственно протеины мышц, но сотни других белков, вовлеченных в энергетический и метаболический баланс всего организма. Как раз сегодня, как считают ученые, это и происходит с современным человеком — в нашем мире комфорта и «диванной болезни» роль умеренной, но постоянной физической нагрузки сведена до минимума, что сразу же отражается на дисбалансе генов каменного века, который приводит организм к таким метаболическим проблемам, как диабет, лишний вес, болезни сердца и крови, расстройства пищеварения, даже памяти и эмоций.


Сколько генов активируется в организме человека под влиянием физической нагрузки?

   Ответ на этот вопрос был получен в 2005 г. в исследовании ученых из Института Каролинска в Стокгольме, Швеция, под руководством Карла Зюндберга (Carl Sundberg). Как оказалось, у здоровых мужчин регулярные занятия в течение шести недель на самом обычном велотренажере активируют такое количество разных генов, которое не активируется больше ничем — около 470. В основном стимулировались гены внеклеточного матрикса мышечных клеток и белки, связывающие кальций, но также важные гены, вовлеченные в развитие диабета и сердечно-сосудистых заболеваний, причем чем лучше результат был достигнут на тренировках, тем выше была экспрессия генов.

Медитация и гены

Сегодня практика медитации — удел не одиноких просвещенных буддийских монахов, как это было лишь 50–70 лет назад, а миллионов обычных людей во всем мире. Заниматься медитацией — не просто чувствовать себя лучше, быть более энергичным и уравновешенным. Медитация заставляет наш мозг работать по-другому, картина мозговых волн меняется, активность мозга синхронизируется, за счет этого нормализуются многие физиологические процессы в организме — сон, пищеварение, функционирование сердечно-сосудистой и нервной систем, меняется даже состав крови. Из исследования, предпринятого в 2005 г. Американской кардиологической ассоциацией, стало известно, что медитация продлевает жизнь, снижая риск смерти от болезней в старости на 25%, от кардиоваскулярных болезней — до 30% и до 50% — от рака. Что же делает с мозгом медитация? В исследовании, проведенном в 2005 г. в Массачусетсском госпитале в Бостоне, США, ученые проследили, что происходит в головах практикующих медитацию людей, используя магнитно-резонансную томографию (МРТ). Специалисты отобрали 15 практикующих медитацию людей с разным опытом (от года до 30 лет) и 15 подопытных, которые никогда не медитировали. После анализа большого массива информации активности и структуры мозга стало ясно, что медитация увеличивает толщину некоторых отделов коры головного мозга, вовлеченных в процессы внимания, рабочей памяти и сенсорной обработки информации — префронтальной коры и островка Рейля. Сара Лазар (Sara Lasar), руководитель данного исследования, прокомментировала результаты эксперимента так: «Вы тренируете мозг во время медитации, поэтому он и растет. Ведь известно, что у музыкантов, лингвистов, атлетов соответствующие области мозга увеличены. Рост коры мозга происходит не за счет роста нейронов, а за счет разрастания кровеносных сосудов, глиальных клеток, астроцитов — всей системы, которая питает мозг».

Как же мало нужно, чтобы включить механизмы саморегуляции в мозге через гены! Как показали эксперименты с использованием МРТ, проведенные в Бостонском университете, США, в 2007 г., достаточно всего одного часа йоги — и мозг начинает производить на 30% больше такого важного ингибиторного медиатора, как GABA. Уменьшение GABA в мозге наблюдается при депрессии, хронических состояниях страха и беспокойствах, а также эпилепсии. Таким образом, занятия самой обычной йогой могли бы здесь заменить медикаментозную терапию. Медитация не только снимает стресс, усталость и беспокойство, но и омолаживает мозг. Так в работе, сделанной в прошлом году в Университете Эмори, США, были исследованы 13 человек, практикующих дзен-медитацию, которую используют буддисты Японии, Китая, Кореи и Вьетнама. В работе было впервые показано, что медитация может обращать вспять процессы старения. Известно, что с возрастом кора головного мозга уменьшается в толщине и объеме, она как бы усыхает, теряет воду, ухудшается трофика, тускнеют внимание и память, замедляется речь. Так вот, медитация останавливает эти процессы — все практикующие дзен-медитацию в зрелом или пожилом возрасте не имели возрастных изменений коры, а также продемонстрировали нормальные показатели в тестах на внимание.Если медитация может так сильно воздействовать на морфологию мозга, значит здесь не обойтись без модификаций в экспрессии генов. В работе исследователей из Всеиндийского института медицинских наук, Нью-Дели, Индия, опубликованной в феврале этого года, были приведены результаты тестов крови 42 людей, как минимум год практикующих дыхательную технику сударшан крия (Sudarshan Kriya), когда человек дышит в разных ритмах. Результаты генного скрининга показали, что те, кто практиковал медитацию, имели более высокий уровень экспрессии таких важных генов, как гены, регулирующие антиоксидатный стресс, иммунный ответ, и гены, регулирующие апоптоз и выживание клеток.

Приведу еще один пример воздействия нетрадиционных оздоровительных практик на регуляцию генома. В 2005 г. ученые из Техасского университета во главе с Цюань-Чжэнь Ли (Quan-Zhen Li) протестировали клетки крови — нейтрофилы, используя ДНК-чипы, у шести азиатов, практикующих как минимум год в течение 1–2 часов в день особую медитационную технику древнего китайского цигун. Результат был впечатляющий — у всех них были сильно активированы гены, усиливающие иммунную систему, снижающие клеточный метаболизм, а также ускоряющие заживление любых воспалительных процессов, ран. Было просканировано более 12 000  генов, из них 250 были изменены, 132 — подавлены, 118 — активированы. Самые мощные изменения претерпели гены из убиквитин-зависимой системы элиминации белков, которая участвует в этиологии многих болезней, таких как рак, диабет, повышенное артериальное давление, сепсис, аутоиммунные заболевания, воспаления, и заболевания, связанные со старением. Многие энзимы этой системы, включая сам убиквитин, у практикующих эту технику были подавлены. Также была снижена экспрессия десяти генов из одинадцати так называемых рибосомальных протеинов, участвующих в синтезе белка. Гены иммунного ответа, интерферон, а также гены, кодирующие антибактериальные и антивирусные пептиды, Defensin-3 и цитокины, были наоборот усилены. Интересно, что снижение потребления калорий — единственный метод на сегодняшний день, который удлиняет жизнь крыс, мышей и приматов, — тоже снижает метаболизм и ингибирует убиквитин-систему элиминации белков во всех клетках.

Comments

( 5 комментариев — Оставить комментарий )
fri_way
8 дек, 2012 15:12 (UTC)
"Интересно, что снижение потребления калорий — единственный метод на сегодняшний день, который удлиняет жизнь крыс, мышей и приматов, — тоже снижает метаболизм и ингибирует убиквитин-систему элиминации белков во всех клетках."

Артём, интересно получается.)Чтобы продлить жизнь нужно потреблять меньше калорий,но ведь для активной жизни именно калории и необходимы. А недостаток их приведёт к истощению тканей организма, как я понимаю. Или я не прав? Поправьте меня пожалуйста!?
artemu238
9 дек, 2012 21:30 (UTC)
...
Всё верно. Просто людям важно находится в балансе между приходом и расходом энергии. Иными словами, нужно искать такой оптимум, при котором нормальная физическая деятельность человека будет обеспечиваться минимальным расходом энергии и ресурсов тела.

К слову, проблема старости современного человека в развитых странах обусловлена избытком питательных веществ. Когда преобладание анаболических процессов в тканях угнетает их обновление. Это ведёт к появлению различных болезней накопления. Если вам интересно почитайте про механизм образования межмолекулярных сшивок в межклеточном веществе и их роль в старении тканей.
(Анонимно)
5 июн, 2015 18:55 (UTC)
Артем, в твоей книге я прочитал, что чтобы не вызвать пищевой лейкоцитоз содержание в белка в пище не должно превышать 2-3%, Здесь всё ясно, вопросов нет. А что касается углеводов и жиров? Какое оптимальное соотношение должно быть между ними? Мог бы ты привести аналогию с формулой Дугласа Грэма 80/10/10 (80% - углеводов / 10% - жиров / 10% - белков), в смысле каково должно быть оптимальное процентное соотношение белков/жиров/углеводов в правильной диете фрукторианца? Имеет ли соотношение углеводов и жиров принципиальное значение? Стоит ли это учитывать при составлении диеты?
artemu238
6 июн, 2015 04:25 (UTC)





Приветствую! По Гремму в системе 80/10/10 количество потребляемых жиров выходит около 20-30 грамм в сутки. Полным людям подобная диета подходит, так как помогает быстро похудеть. Но для человека с нормальной массой тела эта система легко может привести к истощению и дистрофии. Поэтому для оптимизации питания дневная норма растительных жиров должна примерно соответствовать грамму масла на килограмм веса тела.
Однако при условии дефицита калорийности дневного рациона, например, после интенсивной тренировки, можно абсолютно спокойно использовать большее количество растительных жиров. Иными словами, можно без оглядки на какие-то нормы повышать калорийность рациона за счёт добавления растительного масла к салатам или приготовленным овощам.

Каких-то точных цифр в соотношении углеводов и жиров в подобных ситуациях я не рассчитывал, и, думаю, что принципиального значения это не имеет. Каждый человек интуитивно понимает приблизительные нормы тех или иных продуктов во время приёма пищи. Главное во всём этом помнить основные принципы здорового фрукторианского питания:

1) Минимум процессов гниения и пищевого лейкоцитоза. Для этого необходимо чтобы концентрация белка в употребляемых продуктах не превышала 2-3%;
2) Оптимальная калорийность рациона должна располагаться в диапазоне 80-90% от рекомендуемой нормы. Простыми словами - организму необходимо поставлять достаточное количество калорий и давать регулярный отдых от пищи.
3) Исключение из рациона фруктов содержащих дубильные вещества и всего того, что нарушает естественную перистальтику кишечника (чай, кофе и т.д.).
4) В рационе обязательно должны быть сбалансированы закисляющие (кислые фрукты) и защелачивающие продукты (сладкие фрукты, овощи и зелень).
5) Минимум газообразования. Получается возможным благодаря 3-х разовому режиму питания и наличию в рационе овощей и зелени, содержащих грубую клетчатку.

Крепкого здоровья, долголетия и позитивно-жизнерадостного настроения!
(Анонимно)
6 июн, 2015 11:44 (UTC)
Благодарю за ответ! И вопрос по поводу фрукторианства для детей. Есть ли какие-нибудь отличия в рекомендациях по питанию детей относительно тех, что ты даешь в своей книге? Просто есть знакомая семья, которая глядя на меня серьезно задумалась о фрукторианстве, но слабо верят в жизнь без мяса для растущего организма детей. Кроме того их беспокоит вопрос социальной адаптации ребенка фрукторианца в обществе "нормальных" детей, как ему себя вести и как он будет принят в школе, на детских праздниках и пр.
( 5 комментариев — Оставить комментарий )